Performance Optimization I: Single Core/Node Vectorization, Memory - Overview and BG/Q

Argonne &

ENERGY

Hal Finkel

hfinkel@anl.gov

Leadership Computing Facility

ALCF Computational Performance Workshop — May 2, 2017

Optimizing for HPC

v Some trends in HPC architectures
v How you can optimize your code for these architectures (specifically
the IBM BG/Q (Mira) and the Intel Xeon Phi (Theta)

Argonne &

High-Level Optimization

Argonne &

High-Level Optimization

Argonne &

High-Level Optimization

Argonne &

Compiling

When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

(generally best performance)

AN

+mpiwrapper-xl.legacy

AN

+mpiwrapper-x|

<

+mpiwrapper-bgclang.legacy

<

+mpiwrapper-bgclang

AN

+mpiwrapper-gcc.legacy

AN

+mpiwrapper-gcc

(generally worst performance)

Argonne &

Compiling

Basic optimization flags...

v -0O3 — Generally aggressive optimizations (try this first: it is typically the best tested of all compiler
optimization levels)

v -g —Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

» -gsmp=omp (xI) -fopenmp (bgclang and gcc) — Enable OpenMP (the pragmas will be ignored
without this)

v -gnostrict (xl) -ffast-math (bgclang and gcc) — Enable “fast” math optimizations (most people don't
need strict IEEE floating-point semantics). x| enables this by default at -O3 and above and you
need to pass -qstrict to turn it off.

<

AN

AN

<

What programs do...

O,Mlﬂnﬂx | 1y oy
B 00 : :["lip

1 oy
U R

O oy gy oy 222
/: 8

Read data from memory
Compute using that data
Write results back to memory

Communicate with other nodes and the outside world

AAAAAAAAAAAAAAAAAA

How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)

®

Argonne &

There is only one sock

(:) 1 1 iy
el 1oy iy

el IR FHEEIIEIEEEE g gz

e g DREORE T e)

Image source: https://computing.linl.gov/tutorials/linux_clusters/

Argonne &

NATIONAL LABORATORY

There is only one socket

R S

Image source: https://computing.linl.gov/tutorials/linux_clusters/ A BG/Q NOde haS:
v 1 PowerPC A2Q CPU
v 16 GB DDR3 DRAM

Argonne &

There are 16 cores per node

and kel)
105 SHHH | 06 i

o
O N

el il o SHHH hL.LH 07|

_Me{., \Zontroller . o M e

=== lz=li====
= BB R
=S 22

o] T el
FEHEY R T
w('wi]_z H’HJ 1 I L2

or:

@® N
HH =+ H
===

== 2
e

==
= S
==

0 [

===

==

SO =Sl YT X

Ol Moo BT
{7 ATEEEH 7 BEEFT] PR L2
. _ . . T C2 %H~HLOO itk
L3S L o [T 2 1 os JiHH el
Core Cor_e' ‘Core|'="8"Core:| Core | Core 0 Ll R
” T s o s 1 (RU S L T B | ol L2 1';HfH
&l z 02 el 2 Y it e il
o = g [02 it L
i heerr = ez b= HHL - R
s : G 3
.E . = Bm | ._: . ' o e mm om pm o T Z
=|==Shared{:3-Cache"= &3¢ |- = Shared13-Cache ==& RS LR
- i il O’ i 2 e e B '
gey Serdes

I
L
|
I
I
i
|
|
|
!
J
!
I
f
I
I

Image source: https://computing.linl.gov/tutorials/linux_clusters/

!
J
3
i

Argonne &

NATIONAL LABORATORY

There are 16 cores per node

100G 11 1213
|
L SEHEHHEEL, ™
il LN O (ERNN]
I HiH R
: 'PI-J ; i 06 il wujilo s Blewund fuwulie Ko wawad =
o5 H’:‘Lil —LL_% il u““iiw ‘:EHEL.14
1“:’3:"11 ane x| W flll} Hllll
— i T e |
: o hm} 07 i HHH 08 EHHH| HEHE 11 fHHH i
MEITlOI'y COH‘[!’O"EF B FEERY Wrﬁmh“‘ oo [PR | IHH DE?|R3 !
Gl oo BRTE T 5 Hl
. {7 MTEE ™ MEEE el o M fHH: Cosi
i o g . : T 2 H‘HWOO it et gy
S o (T o (T S i o dit e e i
Core’ 1=Core }=Core 1578 Corer| Core | Core g T T l i
N h. o o w1 af 11PU s TR T EHEE | rerpd L2 e] :r: . !I-i‘}
‘ Serdes ' i Serdes

Image source: https://computing.linl.gov/tutorials/linux_clusters/

Argon ne &

NATIONAL LABORATORY

ction Decode Queue

192-entry Reorder Buffer

Integer
ALU/Shift

g Branch
H -

Store
Address

Branch, Fixed Point, Load/Store (XU)

L@—LHa1Hex2Hests:iHex5l—r{ex5H—:i i1 |

Floating Paint (FU)

Argonne &

NATIONAL LABORATORY

There are two pipelines per core PowerPC A2 Core:

ecode Queue

192-entry Reorder Buffer

servation Station

Port 5 Port & Port 7

Ut ote

Intstruction Unit (1LU)

Coom platics '

ex3 exd x5] : rf1 :
a3

Tal2

Branch, Fixed Point, Load/Store (XU)

—L:’E'_an1HEKQHEXSH:iH“5HEXBH i1 |

Floating Paint (FU)

ULEA

FMA FMA Fiul
256bFP | 256b FP
Add

Branch

Argonne &

NATIONAL LABORATORY

There are four hardware threads per core

1 g 1 o 0 v [x5 o 1

| B | Aoo) Hoo) seul o] Heojin]

You must have at least two threads (or processes)
per core to efficiently use the BG/Q!

Argonne &

Vectorization: The Quad-Processing eXtension (QPX)
v On the BG/Q, only QPX vector instructions are supported!

v Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

v The only advantage of single precision over double precision is decreased memory bandwidth/footprint.

256 {

Load

Argonne s Y

Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

Argonne s Y

Putting it all together...

L
Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.

Argonne &

=4
=
)
=
=
Q
2

NATIONAL LABORATORY

Argonne &

Types of parallelism

v Parallelism across nodes (using MPI, etc.)

v Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]
v Parallelism across cores within each socket

v Parallelism across pipelines within each core (i.e. instruction-level parallelism) g
v Parallelism across vector lanes within each pipeline (i.e. SIMD))

v Using instructions that perform multiple operations simultaneously (e.g. FMA) ‘

Argonne &

Computer Architecture

Traditional computers are built to:
 Move data
 Make decisions

 Compute polynomials (of relatively-low order)

f(x) =ao+ a1x + aox’ + asx’ + asr

—

v

4

AAAAAAAAAAAAAAAAAA

CO m p ute I AFC h |teCtu re IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 5, OCTOBER 1990

$ cat /tmp/fl.c
double foo(double a0, ..., double x) {
return a0 + x*(al + x*(a2 + x*(a3 + a4*x)))

}
t0 = fma(a4, x, a3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)
return t3

Argonne &

Computer Architecture

But this is not good...

t0 = fma(a4, x, a3)
Waiting...
wgmg <ww= How do we put useful work here?
Waiting...

Waiting...

t1 = fma(to, x, a2)

A lot of computer architecture revolves around this question:

t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)

return t3

AAAAAAAAAAAAAAAAAA

Hardware Threads

One way is to use hardware threads...

t0 = fma(a4, x, a3) [thread O]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(to, x, a2)

t2 = fma(tl, x, al)
e o o How many threads do we need?
t3=maltz, %, a0) " How much latency do we need to hide?

return t3
Argonne &

Time Scales in Computing

Latency Comparison Numbers

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

0.5 ns

5 ns

7 ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

3

10

150

250

500
1,000
10,000
20,000
150,000

us
us
us
us
us
us
us
us
us

10
20
150

ms
ms
ms
ms

~1GB/sec SSD

~1GB/sec SSD

80x memory

Latency Numbers Every Programmer Should Know: https://gist.github.com/jboner/2841832

AAAAAAAAAAAAAAAAAA

The IBM BG/Q network is fast...
v Each A/B/C/DI/E link bandwidth: 4 GB/s
v Bisection bandwidth (32 racks): 13.1 TB/s

v HW latency

v Best: 80 ns (nearest neighbor)

v Worst: 3 us (96-rack 20 PF system, 31 ho
v MPI latency (zero-length, nearest-neighbor): 2.2 us

Argonne &

Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (inti=0;i<n;i+=2){

for (int1=0;1<n; ++i) {
X = Input]i]
t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, ao)
Output[i] = t3

}
TR

X = Inputfi]
y = Input[i+1]
t0 = fma(a4, x, a3)
u0 = fma(a4, y, a3)
t1 = fma(to, x, a2)
ul = fma(uo, y, a2)
t2 = fma(tl, x, al)
u2 = fma(ul, y, al)
t3 = fma(t2, x, a0)
u3 = fma(uz, y, a0)
Output[i] = t3
Output[i+1] = u3

If you need to tune this yourself, most compilers have a '#pragma unroll' feature.

Argonne &

You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and from
FP pipeline) — you just don't have enough registers!

* X86_64 has 16 general-purpose registers (GPRs) — for
scalar integer data, pointers, etc. — and 16 floating-
point/vector registers

* With AVX-512 (e.g. with Knights Landing) there are 32
floating-point/vector registers

 AVX-512 also adds 8 operation mask registers

 PowerPC has 32 GPRs, 32 scalar floating-point registers
and 32 vector registers (modern cores with VSX
effectively combine these into 64 floating-point/vector
registers)

AAAAAAAAAAAAAAAA

OOO Execution and Loops
 CPUs, including Intel's Knights Landing, use out-of-order
(OO0OQ0) execution to hide latency
* S0 to say that there are only 16 GPRs, for example, isn't the
whole story: there are just 16 GPRs that the compiler can

name for (inti=0;i<n; ++i) {
X = Input]i]
t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)

Output[i] = t3 g

} Argonne &

OO0 Execution

* Importing to exploiting instruction-level parallelism (ILP)
— each core's multiple pipelines

« Combined with branch prediction, can effectively provide
a kind of dynamic loop unrolling

 Limited by the number of “rename buffer entries” (72 on
Knights Landing)

 Limited by the number of “reorder buffer entries” (72 on
Knights Landing)

« Mispredicted branches can lead to wasted work!

AAAAAAAAAAAAAAAAAA

KNL Pipeline

n=-
=i

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080

Argonne &

Vectorization: The Quad-Processing eXtension

[N

(This is for the IBM BG/Q, but the picture is fairly generic)

Argonne &

SIMD: What does it mean?

Scalar SIMD

X1

1

X171

I I *I
o

https://software.intel.com/en-us/articles/ticker-tape-part-2

Argonne &

Vectors Have Many Types

e A 512-bit vector can hold 8 double-precision numbers, 16
single-precision numbers, etc.

 Different assembly instructions have different assumptions
about the data types

e Except on the IBM BG/Q (where only FP is supported), both
Integer and FP types are supported

SD/UD/MDIDP O SD/UDVMDIDP 1

SWUWIMWISP O ‘ SWIUWMWISP 1 SWIUWIMWISP 2 | SWILWIMWISP 3
n S [R 127

(This diagram is from the IBM POWER ISA manual, showing the 128-bit VSX registers)

Vector Length
128 256 512
Byte 16 32 64
ward 8 16
element Dw ord/SP 4 8 16
size QuordioP | 2 - 8 Argonne &

AOS vs. SOA

Structure of Arrays
struct Particles {

float *y;
float *w;
lzfz]z]z2]-] ;
W W w W
Array of Structures struct Particle {
float x;
float z;
httos: . : : float w;
ttps://software.intel.com/en-us/articles/ticker-tape-part-2 .

struct Particle *Particles;

Argonne &

MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear
algebra, FFTs, and more).

v MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for
NVIDIA GPUs

v For FFTs, there is often an optional FFTW-compatible interface.

AAAAAAAAAAAAAAAAAA

ESSL

IBM provides ESSL.: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). For
FFTs, there is an optional FFTW-compatible interface.

v ESSL is installed in /soft/libraries/essl/current
» You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)

Argonne &

Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

v Memory
v Sending data between ranks on the same node often involves “unnecessary” copying (unless
using MPI1-3 shared memory windows)
v Similarly, your application may need to manage “unnecessary” ghost regions
v MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
v And Memory
v When threads can work together they can share resources instead of competing (cache,
memory bandwidth, etc.)
v Each process only gets a modest amount of memory per core
v And parallelism
v You'll likely see the best overall results from the scheme that exposes the most parallelism

AAAAAAAAAAAAAAAAAA

Avoid central coordinators

A scheme like this is highly unlikely to scale!

Argonne &

Load Balancing

« Keep "work units" being distributed between ranks as large as possible, but try hard to

keep everything load balanced.

» Think about load balancing early in your application design: it is the largest impediment to

scaling on large systems.

This is not good; rank 0 has much more work.

Argonne &

schedule(dynamic) can be your friend...

#pragma omp parallel for schedule(dynamic)
for i=0;i<n;i++){

unknown_amount_of work(i);

Tiwead0 Thread1 Thead? Thresd3 Tiwead0 Thead1 Thiesd? Thead3
l
{a) Unbalanced assignment of tasks o threads [b) Balanosd assignment of tasks to threads

https://software.intel.com/en-us/articles/load-balance-and-parallel-performance

Argonne &

#pragma omp simd
Starting with OpenMP 4.0, OpenMP also supports explicit vectorization...

char foo(char *A, int n) {

inti;

char x = 0;
#pragma omp simd reduction(+:x)

for (i=0; i<n; i++){ H N

X =X + A[i];

}

return Xx; char foo(char *A, int n) {
} inti;

char x = 0;
#pragma omp parallel for simd reduction(+:x)
for (i=0; i<n; i++){
X =X+ Ali];
}

return Xx;

}

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

Argonne &

Some final advice...

Don't guess! Profile! (We'll have several talks about how to do that.) Your performance bottlenecks on the
BG/Q might be very different from those on other systems.

And don't be afraid to ask questions... ‘ ' Any questions?

Argonne &

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

